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ABSTRACT A/ f‘ \ :
We comﬁut\gt‘me decay rates for stationary perturbations of Poiseuille flow in channels ',“
/ |
and pipes. The decav rates are found by solving eigenvalue problems of ordinary differential \
equations, where the eigenvalues give the rate of decay for the perturbation. A two-point ’
boundary value method is used to compute the eigenvalues yielding efficient and accurate 2
o
calculations. For the channel flow problem, the results are in agreement with previous .
Ly
calculations, (e.g. [3], [4], [5], [7], [12}) however, the problem of determining the rate of
decay for a fluid motion in a pipe has not been considered before. We-prove thas for the g
2
Stokes problem in a pipe the eigenvalues, governing the rate of decay, are complex. We® %
carry out computations for small and moderate Reynolds numbers, also high Reynolds f
number computations were done to show the effectiveness of this method. :
3
[
AMS(MOS) Subject Classifications: 65L15, 76D07
Key Words: Navier-Stokes, eigenvalue problem. Poiseuille flow; PASVA3, Reynolds :

number, asymptotic
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COMPUTATION OF THE EIGE..\'VALUES FOR PERTURBATIONS OF
POISEUILLE FLOW USING A TWO-POINT BOUNDARY VALUE METHOD
Gerardo A. Ache”

1. Introductioﬁ

In this paper we are concerned with the eigenvalue problem which governs the rate
of decay for a stationary perturbation of Poiseuille low. We consider two-dimensional
viscous motions in channels and axi-symmetric viscous flow in pipes. We assume that
the difference between the base flow and Poiseuille flow decays exponentially downstream
(or upstream). It is then possible to seek solutions to the Navier-Stokes equations, far
downstream (or upstream), that are a perturbation to the Poiseuille profile and that decay
exponentially in the axial direction. The equations can then be linearized yielding an
ordinary differential eigenvalue system where the eigenvalues determine the rate of decay
for the stationary perturbation.

By use of the stream function formulation, it is possible to reduce the eigenvalue sys-
tem to a single fourth-order differential eigenvalue equation for the decay of the stationary
perturbation. In the two-dimensional case this differential equation is very similar to the
Orr-Sommerfeld stability equation. Results regarding the computation of these eigen-
values, in the case of channel flow, have been presented previously, e.g. {31,[4],/5],/7].{12],
however when the fluid motion is considered axially symmetric, the problem of determining

the rate of decay for the stationary perturbation has not been considered before.
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Y
To compute the eigenvalues several methods have been used, for example, a spectral
v method by Bramley [3], and Bramley and Dennis |4, an initial value method by Bramley
o and Dennis [5], a singular perturbation method by Wilson [12], etc. All of these works have
e
i : . . : ,
it dealt with the two-dimensional channel flow problern. and with the exception of Bramley i3]
M
i

/ all of them have considered the Navier-Stokes equations in the stream function formulation.
X
Ao
K- The work of Bramley and Dennis [4' appears to be the most complete among all others
’ []

) menticned above. They used an extension of the Orszag’s spectral method presented in .
I3 [9]. In {3] Bramley used the same method to compute the eigenvalues using the primitive '
N
'."_‘ formulation for the Navier-Stokes equations, i.e., he used the velocity field and the pressure

L'y
D instead of the stream function. However, the results of Bramley |3’ are not in complete .
N agreement with [4]. This disagreement may be the result of using the wrong number of
B
RS - . et

~ boundary conditions. There are two disadvantages reported in {4] with respect to spectral

E S N
:: methods, these are the computation of spurious eigenvalues and the loss of accuracy for y

7
- . . . . . .

’ high Reynolds numbers computations, especially for eigenvalues with negative real part.

4
, In [5] Bramley and Dennis used an initial value method to compute the eigenvalues. They
>,

o said that using this method it is possible to overcome some of the difficulties of spectral :
" . . . . :
> method. However, their method computes only eigenvalues, and not eigenfunctions, and .
X :
s only one at a time. .
s :
7 :
U

«

- In this paper we compute the eigenvalues for a perturbation of Poiseuille flow. in a

~ :
~ channel and a pipe, using a more accurate and efficient method. This method can be

. described in two steps, first, we transform the eigenvalue problem into an equivalent two-

: point boundary value system, then we numerically solve this system using the two-point :

» f,

f o ’

» b »

»
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boundary value solver DVCPR from the IMSL library. For the two-dimensional problem
our results are in full agreement with the érevious work of Bramley and Dennis [4], for small
and moderate Reynolds numbers, and with the asymptotic prediction of Wilson [12}, for
eigenvalues approaching zero at high Reynolds numbers. The numerical results presented
in this paper show the efficiency of the calculations and the superiority of our method with
respect to the other methods mentioned above. These eigenvalues are important for the

derivation of boundary conditions, this problem was considered in [1".

2. Channel Flow

Given a semi-infinite channel, the incompressible Navier-Stokes equations are given

by

Jdu du ?ﬁ_

1
g = =\? .
6$+vay+aI A (2.1a)

— 4r-— 4+ — ==V, 2.1
“ax”ayLay R (2.10)
du OJdv
a—r'+a—y—0, {_2.10)

with boundary conditions

, (2.1d)
u=Fy) ., v=Fy) at =0, (2.1¢€)

where F, is a profile satisfying F,(=1) = 0. Finally we have the regularity condition
(u,v) — (4,0) as r = oc . (2.1f)

Here R represents the Reynolds number, V2 = 8%,/8z° ~ 8?/9y? and @ = 3(1 - y?) is the

Poiseuille parabolic profile.




Since we are only interested in solutions of this system which decay exponentially, far

downstream we seek an asymptotic solution to (2.1) in the form
3 2
u(z,y) = S (1 - y°) + Wi(y) exp(-Az)

v(z,y) = Wi(y) exp(-Az) ,
p(z,y) = -3R™ 'z + R™'§(y) exp(-Az) + C ,

where C is an arbitrary constant.
Substituting these expressions in equations (2.1a) to (2.1¢), and neglecting nonlinear
terms, we have that (A, W, ,W,,q) satisfies the following eigenvalue system of nrdinary

differential equations,

d2le
dy?

-

‘_J
"I
L~
. \'
[
S

3
—R{E(l - y?)AW, = 3yW,} — Ag - AT,

» :‘ -"}";'I\

A 5
L ]

dg _3
dy_

and boundary conditions

W i(£1) = Wa(£1) =0 . (2.3d)

We are interested in solving this two-point boundary value system to determine the

rate of decay A. For r large (i.e.. downstream) the solution to (2.1) may be represented by

3
u(z,y) = 5 (1 - ¢°) }:mn v) exp(~Anz) | (2.4a)

v(z,y) = Y Wan(y)exp(-Anz) , (2.4b)

n
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and
¢(z,y) = -3R"'z+R™! an(y) exp(—Anz) + C , (2.4¢)
Re(An) < Re(An+1) - (2.4d)
' The sum in (2.4a) to (2.4¢) is taken over all the eigenvalues with positive real part (the

eigenvalues with negative real part can be used to construct an asymptotic solution to (2.1)
in a semi-infinite channel on the negative z-axis) and (W n,W2r,§, Ar) being a solution
to the system (2.3).

We may eliminate the perturbed pressure § from the system (2.3) by differentiating
(2.3a) with respect to y, multiplying equation (2.3a) by —A, adding the resulting expres-
sions and using (2.3b), then the system (2.3) is reduced into a single fourth-order differen-
tial equation in W5 and A very similar to the Orr-Sommerfeld equation (for simplicity we

replace W, by W)

d‘W ,d?W P 3 o AW
. i +2) 7y',‘,—ﬂ\wT,\R{E(l—y)(g;z—m\ W)+3w}=0, (2.50)
and boundary conditions
W:ﬂ=o at y = £1 . (2.5b)
b dy

We solved this equation in order to compare our method of solution with previous
computations. Equation (2.5) is associated with the stream function formulation of the
Navier-Stokes equations (see e.g. '1').

When the Reynolds number R is equal to zero we may find an explicit solution to (2.3)

: and therefore to (2.3). This solution is given in terms of the Papkovitch-Fad'le functions T

. ; :

b %
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e
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for the biharmonic equation in a semi-infinite strip . For R = 0 equation (2.5) becomes

d4W 2d 41x7
) +2X &y +,\u_o (2.6)

and boundary conditions (2.5b). This equation is associated with the biharmonic equation
when solutions of the form w(z,y) = W (y)exp(—Az) are sought. There are two types of

solutions for (2.6}, one even and the other odd, which are given by
We(y) = (v - 1)sin(A(y = 1)) = [y = 1) sin(A(y - 1)) . (2.7a)

and

We(y) = (y - 1)sin(A°(y + 1)) - (y + 1) sin(A°(y - 1)) , (2.76)

respectively. To satisfy the boundary conditions (2.5b) we need that the eigenvalues A®

and A° satisfy the following transcendental equations,
sin (2A€) -~ 2A¢ =0, (2.8a)

and

sin (2A°) = 2A° =0 , (2.8b)

respectively. We notice that if A is an eigenvalue satisfying (2.8) so is —X and also =A.

also the function
= Z anWo(y)exp(~Anr) . (2.9) -_jj
n .-‘;
where the sum is taken over the eigenvalues with positive real part. satisfies the biharmonic ;{
.
o)
equation in a semi-infinite strip with transversal boundary conditions v = Jduw,/dy = 0 -j]
In section 4 we discuss a method to solve the eigenvalue problems (2.3) and (2.5). 7y

where the solution to the Stokes problem (2.6) plays an important role. Also in section 5
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Reynolds numbers.

3. Axially Symmetric Flow

written as,

Ju du Jdp 1 ._, u
u5:+vg-;-rar—R(Vu— ),

3v+‘6_v_‘_6p_1
ar ‘8z 8z R

and boundary conditions

Since the fluid motion is symmetric the conditions at the center line are

dv
u=—=0at r=0,
or at 7
we also specify the entry condition
u=F1(r) ,U:Fg(r) at Z:'O,

finally we have the regularity condition.

(u,v) = (0,8) as z—o0.

Here V2 =1/r 3/9r (rd,/8r ) - 38%/9z% ,and i =1 -r2.

7
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we present numerical results involving the computation of these eigenvalues for arbitrary

In this section we consider the incompressible Navier-Stokes equations in cylindrical

coordinates and dimensionless form, set in a semi-infinite pipe. These equations can be

(3.1a)

(3.1b)

(3.1¢)

(3.1d)

(3.1¢)

(3.1f) -
:

(3.1¢) \*
;
0
oy

A
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Similar to the channel flow problem we seek an asymptotic solution to (3.1) in the

form,
u(r,2z) = W, (r)exp(-Az) , (3.2q)
v(r,z) = 1—r+ Wy(r)exp(-2Az) , (3.2b)
and
p(r,z) = —4R™ 'z - R7'§(r) exp(—Az) + C , (3.2¢)

with C an arbitrary constant.
Substituting these expressions in (3.1a) to (3.1¢), and neglecting nonlinear terms. we

obtain an eigenvalue system in W, , W, . § and A similar to (2.3), i.e. ,

d;‘:‘ = AW, — W;‘ , (3.3q)
W _Rizw, + a1 - ) - 1O g (3.35)
dr? r dr
Z_‘E = R(1 - r2)QW, ~ /\‘% + AW, (3.3¢)
with boundary conditions,
W 1(0) = d::z (0) =0 and Wy(1) = Wy(1) =0 . (3.3d)

By solving this system we may represent the solution to (2.1). for = far downstream.
in the same way as for the channel flow problem i.e.. by expressions similar to (2.4a) to
(2.44).

Similar to the channel flow problem we solved the system (3.3) numerically, using the

solution to the system for R = 0 (the Stokes problem). These solutions may be found as

W A A R S oo
e Ry P N NN N NI N N o



follows. When R = 0 the system (3.3) becomes,

dW w \
1 =W, - 22 (3.4a)
T

dr

W,  1dW,

== — AW, - AG i
dr2 r dr A 2 /\q ; (3 4b)
dq- _ dw 2 2137
i A 2 AWy, (3.4¢)

and boundary conditions (3.3d).

To find an explicit solution to this system differentiate (3.4¢) with respect to r, mul-

tiply (3.4a) by A% and (3.4b) by A, then add the resulting expressions and using (3.4¢c) we

obtain the following differential equation in §,

d’q 149

dr2 rdr

+A%g=0. (3.5)

This equation has the particular solution,

i
a(r) = Jo(Ar) (3.6) 2
.
_ where Jg is the Bessel function of first kind and order zero. This is the only solution, up F
>

to a multiplicative constant, which is finite when r is equal to zero. Substituting g(r) in

x

PR

. v ¥
)

(3.4b) we obtain the following differential equation in W,

AT

W, _1dW;

13 il AW, = —AJo(Ar) (3.7q)

with boundary conditions.

d“’z
dr

(0) = Wy(1) =0 . ~ (3.7b)

This two-point boundary value problem has the following solution.

W s(r) = BJo(Ar) - %u.(m , (3.8) X

N AN

\3
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N N L e e L N A T T A



AR 05 AV a0 S R0 0 D6 A Gty WAL SR R 6 st et B A S B L O AL LU AR LAL A A LML AR A A O AN AL SN st o V1 ataabe” ol SN Ay 0y 6 LA

where b is a constaut to be determined by W2(1) = 0 . Using (3.4¢) then W, is given as,

W (r) = i[%rJo(Ar) — (1= AB)J,(Ar)] . (3.9)

P EE T, o i e

Since the solutions (3.8) and (3.9) need to satisfy the boundary conditions (3.3d) we have

that,

.
g
he

AW, (1) = %JO(A) ~ (- AR (A) =0 (3.100)

and

W 3(1) = BJo(}) — %Jl(,\) ~0. (3.10b)

By eliminating b from these two equations we cbtain,

1++v1 - A2 1 _
TJO(A) - 5h() =0. (3.11)

S SRS AT

To solve this equation we observe that (3.11) can be transformed, after some algebraic

manipulations, into the following non-linear equation

TA)Jo(A) - S(20) + JE) = 0 . (3.12)

WAL

Y|
[

Lemma 3.1

All non-trivial solutions to the equation (3.12), that is those with A = 0 . are complex.

Proof

We make use of the following integral formula involving the Bessel functions.

/sz(r)dz = };xz(J(_?(J:) ~ JHz)) - zJo(z) (7). (3.13)

10
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This formula is obtained by integrating by parts Lommel's integral formula with ¢ = 1

(see [2], p 10). Then assuming that some X satisfying (3.12) is real we get the contradiction

that

4 : A 1

0 . 0 < / zJy(z)*dr = 5,\2(J§(,\) —~JEA) = AMo(M)J1(A) =0,

, 0

Y where we have assumed, without loss of generality, that A > 0. This contradiction proves
: .

- the lemma.

It is known that the Bessel functions have the following asymptotic representations,

» 2 T

N Jo(A) = (==)"*{cos(A — = : 3.14
: o) = (5)/Heos(A = 2) + c1(0)} (3.14a)
N

and

g 2 12, s

o J1(A) = (=) *{sin(A = =) ~e2(N)} , (3.14b)
: A 4

Y where £,(A),£2(A) can be regarded as small order terms for Re(A) large. Substituting
; these asymptotic expressions in (3.12), and neglecting £,(A) and <2()), the A’s can be
’

- approximated by solutions of the following transcendental equation,
3 cos(2A) +A =0 . (3.15)
- Solutions of this equation can be used as initial iterates for a Newton method to obtain
b the roots of (3.12). We will present the detail of the computation in section 5.

> Similar to the channel flow problem we used the solution to the Stokes problem to
< numerically solve the system (3.3) for arbitrary Reynolds numbers.

. 4. Method of Solution

- In this section we discuss a method to solve the two-point boundary value problems for
~ the systems (2.3), (3.3) and equation (2.5) and determine their eigenvalues. The method
)

N 1

P, ot Fd VWY . PO ERCTOIN O PO TarT AT AT AT N AT ‘
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can be described as follows, first the eigenvalue problem is transformed into an equivalent

two-point boundary value first-order system of the form,

A

Z'=A(MNRNZI , a<t<b, (4.1a)

> ',.'-?},51 5 O

‘ A'=0, (4.18)

‘.' "l "I' .;. c

with boundary conditions

,._.’.
.
|‘Il

9]
[~
NI
B
|
9]
Ny
=
i
o
o

(4.1¢)

-

ze(b) =1, (4.1d)

1 4 'Al‘;v.;l ‘l.l.'

LA
."

for some k , 1 < k < N . Here Z= (z21,22,-*-,2N) , and A, Ba, By are N x N matrices.

LS

. v.l‘l'x"
LA

The prime in (4.1a) indicates derivatives with respect to t. The condition (4.1d) has to N
be chosen in a way that is not in conflict with (4.1c). In the case of systems (2.3}, (3.3) o)
' [ ]
and equation (2.3) we used for condition (4.1d) W3(1) = 1, W{(1) = 1, and W"(1) = 1. ':'_:
respectively. To numerically solve the system (4.1) we used the two-point boundary value ::".\:
system code DVCPR from the IMSL library (this code is also known as PASVA3), it is ‘ ”-
CNE
hY
TS
Y
a standard solver for first-order system of ordinary differential equations with conditions ',:_
at two end points. It uses a variable step, with an automatic criterion to select a non- o~
R
uniform grid. and a variable order of accuracy, with an excellent correspondence between :'_’,
e
the requested tolerance (tol) and the actual global error in the numerical solution, (see ::
A
[10). Since the systems considered are non-linear we used as initial iterate in PASVA3 the —.-
solution to the corresponding Stokes problem (R = 0) , which is known and for which the ,.f-
)

o«

boundary conditions are satisfied. to generate solutions for arbitrary Reynolds numbers.

«

7

7

This procedure is called continuation. The disadvantages of this method are that we have

R ';'x:’ Py

[
4

"y
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fa”a" 2 a

to compute the eigenvalues one at a time, however the eigenvalues are computed together

A % S aw?

with their eigenfunctions. Also we can not compute the solution at a critical Reynolds
number, i.e. a Reynolds number for which the solution to the system is not isolated,

however it is possible to compute solutions for Reynolds numbers close to a critical value.

i

By using this method we avoid the computation of spurious eigenvalues and also for high

Reynolds numbers the solution can be computed in a very accurate manner.

5. Numerical Results

We now present some numerical results concerning the eigenvalue problems described
in §2 and §3. For the channel flow problem our results are in full agreement with the
previous computation of Bramley and Dennis [4], also we obtain the same answer by
solving the system (4.1) corresponding to the primitive formulation, i.e., equations (2.3),
and the system (4.1) corresponding to the stream function formulation, i.e.. equation (2.5).

We present about the same number of results as in '4]. We present our results graph-
ically concerning the behavior of these eigenvalues in the complex plane. We regard these
eigenvalues as a function of Reynolds numbers in the form A(R) = a(R) + i13(R) then we

plotted the pairs (a(R),3(R)) in the A plane. We computed even and odd branches of

<oy

.
Py we

eigenvalues and eigenvalues for axi-symmetric flow. Note that for the axi-symmetric flow

f

there is no associated parity, such as even or odd, thus when we refer to an even or odd

it

solution it means an even or odd solution to the channel problem.

N For the channel flow problem we have found that these eigenvalues behave as follows ]
e .-:
i; (see figures 1.1a and 1.1b). Let (A4(0), Zx(¢)) be an eigenpair solution for R = 0 where 3
i~ B

E ! Re(My) '<| Re(Aks1) 'v k = 1,2,--- . For 0 < R < R, (Ax(R).Zk(t)) remains .
L-'.: 13

J

N
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complex, its conjugate also being an eigenpair solution. At R = Rf,o this complex solution

and its conjugate coalesce on the real axis and then; for R larger than Rf'o they split
into two branches of real solutions, one with increasing eigenvalues and the other with
decreasing eigenvalues. For solutions with positive eigenvalues the increasing real solution
(Ak(R),Z(t)) coalesces with the decreasing real solution (Ak~1(R),Zk.1(t)) of the next
branch at R = Rf’l then, for larger values of R these two solutions split into a complex
solution and its conjugate and again they remain complex for Rf,, < R < RE, , then
at R = Rf,z the complex solution and its conjugate again coalesce on the real axis and
the cycle is repeated. Notice that R;‘,m, m = 1,2,---, are the critical Revnolds numbers.
There is an exception to this cycling phenomenon the first even branch of solution remains
complex and approaches zero as R increases. Also the first real branch of even and odd

decreasing eigenvalues approaches zero as R increases. None of the previous researchers

have reported the second type of critical Revnolds number at which two real solutions

coalesce and split into a complex solution and its conjugate. Only Wilson |12} pointed out

that the positive increasing real eigenvalues approach a fixed value on the real axis. As can

be seen from Figures 1.1a and 1.1b the cycles of the eigenvalues appear to be converging

to a value on the real axis.

For eigenvalues with negative real part the situation is different. solutions with eigen-

values which decrease in magnitude either approach zero as R increases, but in a much

slower rate than solutions with positive real eigenvalues, or they approach a fixed value.

In these cases, the real eigenvalues increase or decrease very slowly that for the range of
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the Reynolds number for which we made the computations, we did not observe the coa-

lescence of real eigenvalues with negative real part.

We have found that for the axi-symmetric problem the solutions behave in the same
manner as the odd solutions for the channel problem. That is, the solution are initially
complex, the conjugate pairs coalesce on the real axis, the real solutions, with positive

eigenvalues, coalesce. becoming complex. etc.

Figures 1.1a and 1.1b show the eigenvalues with positive real part in the A plane for
the first and second branches of even and odd eigenvalues, respectively, without including
the complex conjugate. Also we do not include graphical displays for the axi-symmetric
case since it is similar to the odd case. These graphics have been obtained for some
range of R which are different for each curve. For the even eigenvalues the first curve,
corresponding to the complex branch, was made for 0 < R < 10° while the second branch
for 0 < R <100 . For odd eigenvalues the first curve corresponds to 0 < R < 90 . and the
second for 0 < R < 100 . These differences arise because we wanted to illustrate the cycles
for each branch. All the computations were done on the VAX 11,780 at the Mathematics

Research Center at the University of Wisconsin-Madison.

Similar to 4 we present several tables which include the computation involving the
eigenvalues. For R = 0, in the channel case, the eigenvalues may be computed by solving
the transcendental equations (2.8a) and .(2.81)) . Results concerning the solutions of these
equations can be found in |6, and '11 . However, for the axi-symmetric case since there are
not previous results we may start by computing the first few eigenvalues, with positive real
part, which correspond to solutions of equation (3.12}. As we said in §3 to solve equation
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(3.12) we used solutions to (3.15) as initial iterates for the Newton method. At the same

time to solve (3.15) we used the Newton method and as initial iterates the expressions,

log(2yn) ¢

An=n — log(21s) 5 log(274) | (5.2)
44, 2

. with v, = 12—"-;—1-H ,n = 1,2---, since these expressions are asymptotic solutions to

(3.15). In each case we have found that only two or three iterations were needed for the
Newton method to find solutions to (3.12) and (3.15) with six decimal places of accuracy.
The first several solution to the equation (3.12) are given in Table 1. Also we are including
only those tables for which we have obtained results that are not reported in 4! (the
complete set of tables regarding all the numerical results can be found in 1), for example
in Tables 2, 3, 4, 5, 6 we show real and complex eigenvalues for the axi-symmetric case,
in Tables 8, 9 we give the critical Reynolds numbers, and eigenvalues. corresponding to
graphics (1.1a) and (1.1b), in Tables 10, 11 we show the eigenvalues for high Reynolds
number calculations.

As pointed out in 4!, for large values of R the eigenvalues which have large modulus
tend to be less accurate. Since the complex eigenvalues with negative real part have
larger modulus than those with positive real part they may be a sensitive quantity in
the computation. We computed the first branch of odd complex eigenvalues for R > 10
with different tolerances (the tolerance tol is a parameter in PASVA3 that controls the
grow of the estimate errors). We have found that the accuracy of the eigenvalues increased
considerably while we decreased the tolerance, e.g., for tol = 107° and 10~% the eigenvalues

agree up to six decimal places for Reynolds numbers in the range 10 < R < 50 and they

have at least three decimals places in common for R > 50 . while for tol = 107® and 1
)
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10710 the eigenvalues agree up to six decimal places for Reynolds numbers in the range

10 < R < 10000 . We present the corresponding results in Table 7.

6. Eigenvalues at Critical Reynolds Numbers

As we pointed out before this méthod fails to compute eigenvalues at critical Revnolds
numbers. In [4! Bramley and Dennis computed some eigenvalues, that they suggested
occur at critical Reynolds numbers, e.g. at R = 6.3 they computed the eigenvalue A = 6.0,
which corresponds to the first critical eigenvalues of the second odd branch (see figure
1.1b). We have found, according to our computation, that R = 6.3 is not exactly a critical
Reynolds number but it is very close to it, i.e., we computed two eigenvalues for that R, one
corresponding to the increasing solution with A = 6.01267 (which, apparently, agrees with
the value given by Bramley and Dennis) and the other corresponding to the decreasing
solution i.e. A = 5.85346. A similar situation happens for a critical eigenvalue reported
in 17 by Gillis and Brandt. They computed the eigenvalue A =~ 2.632, presumably a
critical one, at R = 8.461 . We compute eigenvalues A = 2.62085 and )\ = 2.63875 at that
Reynoids number. We believe that it is difficult to determine exactly a critical Reynolds
number and its critical eigenvalue. Here we introduce a device. which may be useful, to
compute better approximations to critical Reynolds numbers and their eigenvalues. First

we assume that the eigenvalues, near a critical Reynolds number, may be represented by

E the following formula,

; .
/ ~

. A=A +~aVR- R, . (6.1) R

; S,

N .‘-‘

! where R. is the critical Reynolds number, A, the critical eigenvalue and a is a constant. ::j

]

) . , z

. For Reynolds numbers R, R,.R3, near R. we can rewrite (6.1), after some algebraic “1‘

17




manipulation, as

Ri= Ry + A(Ai = \1) + B(Ai — \)?, (6.2)

with 4 and B given by A4 = (1/@)? and B = (1/a@)*(2A; — 2).) respectively, and 1 = 2,3.
Then, using the values of R,,A; , we solved the system (6.2) in terms of A. B . We can

compute A, by the formula

A
c= A1 — — 6.
A 17 3B (6.3)

while R, is obtained using (6.1). This approach seems to work well, whenever the eigen-
values are close to A.. In Tables 8 and 9 we show all the critical eigenvalues, corresponding

to Figures 1.1a and 1.1b, computed by this approach.

7. Asymptotic Behavior for Large R

It is interesting to see the behavior of these eigenvalues for high Reynolds numbers. By
high Reynolds number we mean that the system (4.1) becomes a stiff system of ordinary
differential equations. In ;12], Wilson developed a theory based on a singular perturbation
analysis to investigate these eigenvalues. He considered equation (2.5), corresponding to

a channel flow problem in the stream function formulation. For high Reynolds numbers

E
:
|
|
:;
|
I
I
!
b

Wilson found that the eigenvalues approaching zero downstream fell in two categories,

r
' a
.
a

5
‘
'
L]

5
iy
.

)
™

one in which the eigenvalues approached zero as O(R~!) and in the other as O(R™*%) .
, From Tables 5 we see that the eigenvalues behaving like O(R~!) correspond to positive
real decreasing eigenvalues, which according to Wilson, these eigenvalues may be written
as A = A\oR~! + O(R™3%) with ), being a constant. By neglecting smaller terms we have

that Ao = AR . Then it is possible to use the numerical data to compute ;. We did that

18
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for R = 10°® and the A¢’s that we found agree with those given by Wilson, (see {12}, Table
3).

The second type of eigenvalues approaching zero downstream, according to our compu-
tation, are the even complex eigenvalues (first branch). By assuming that these eigenvalues

can be written as

A=XAR7F 4ot (7.1)

we have that for R large enough, neglecting smaller perturbations, we may compute the
Ao’s , using the numerical data, by A\g = AR* . In Table 10 we present the corresponding
results.
Notice that Ag tends to a constant as R increases, it seems to be that R has to be
quite large before neglecting any smaller perturbation in the asymptotic expression for A.
Unfortunately, Wilson did not mention how to obtain the smaller order terms in (7.1).
. Using the numerical data we may attempt to compute the second lower order term in (7.1)

by assuming that A can be expanded as

=bR F+cR ¥, (7.2)

with b. ¢,d constants to be determined. We have then that for four consecutive eigenvalues

A1,A2.A3 and A4 . at Reynolds numbers of the form Ry, = 10R;_, . the following formuia

10" *ay — a3 = Re(c)1074(107* — 1074 R ¢ . (7.3a)

and "

10'%(13 ~ a4 = Re(c)]O“?d(lO_‘1 - 10°d)Rl'd . (7.36) :1
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where Ay = ai + 183k, i.e., we have that d is given by

10—';&2 — Q3 -
d= log(-l——) log 10 y (74)
T

while b can be determined, using again (7.2), by

’ _dA _A
pe 10 a7 A (7.5)

- _lyp—*%
(10-4 - 10" 7)R,

-
{.

and c is determined using (7.2) with A replaced by Ay .
We found the following values for b,c and d, b = 1.6400~-0.7813z, ¢ = —0.1655-0.04351
and d = 0.34676. We used A, corresponding to Rx = 103, 10%, 10°%, 10°. Therefore by

substituting these values in (7.2) it is possible to obtain a better asymptotic prediction.

Notice that d is approximately 753 i.e., the eigenvalues behave, approximately, as
A = (1.64 + 0.7813{)R™* ~ O(R™17) . (7.5)

‘s
E
‘
;,
E
E
E

In Table 11 we show a comparation between the numerical results of the eigenvalue
calculations and the asymptotic results using formula (7.2). The agreement is satisfactory.
notice that for the Reynolds numbers used to derive formula (7.2) the agreements are

better.

8. Conclusion

The eigenvalues governing the rate of decay of perturbations of Poiseuille flow have

been studied. The procedure to compute the eigenvalues is based upon expressing the

eigenvalue system as a two-point boundary value problem. The eigenvalues are computed

,- “» ."v,v.‘-..l

one at a time jointly with the eigenfunctions, the results presented are in agreement with

alel
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previous computations {4' and '12". For high Reynolds numbers we show that the first
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branch of even eigenvalues has an asymptotic representation of the form (7.5). We think
that our procedure is simpler, more direct and efficient than previous methods and can
be used with relative ease on a computer. Due to the high accuracy obtained on using

this method we strongly recommend it for computations involving eigenvalue systems of

ordinary differential equations.
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N TABLE 1
o
A Solutions to equation (3.12)
:c ‘; ) 1,
k- 4.46630~1.46747]
oy 7.69410—1.72697]
10.87457 ~1.89494i
- 14.03889--2.02006i
o 17.19557—2.11995i
- 20.34797-2.20312i
- 23.49772-2.27441i
26.64572-2. 336791
| 29.79248-2.392
. | 32.93833-2.14 ”14:
)
N
A TABLE 2
{ : Axi-symetric complex eigenvalues with positive real part for 0 < R < 100
A : -
e R A i A ‘ A
; 0 . 4.46620-1.467471 7.69410—1.72697i 10.87457—1.894941
A 1  4.29200-1.42646i 7.32551—-1.69447i 10.70765—1.5%67231
" 3 ¢ 3.76255-1.06197i 6.95388-1.310881 . 10.11519-1.47824i
‘ : 15 4.24793-0.786€8i v.31772-1.109201 10.40317—-1.283571
25 3.70720-0.50937i 7.77352-0.31462:; 10.82173-0.950501
., 50 3.79197-0.45240i 7.44769-0.69724i 10.31659-0.903531
ij 100 . 4.17041-0.27261i 7.48688-0.333621 10.22035-0.64356i1
,l
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o
-
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N
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o
o
L
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TABLE 3
Complex eigenvalues with smallest positive real part for R > 100
R 1r A¢(even) A°(odd) A{axi-svymm)
250 | 2.78306-0.27633i - 0.72120-0.37930i 3.80081-0.066501
300 1‘ 2.71137-0.152647 = 0.65637-0.336421 3.97600~0.17319i
1000 } 2.70753-0.155831 ! 0.39650—0.29956i 3.86180-0.15698i
2500 | 2.67639-0.129991 ' 0.28104-0.18322i 3.50706—0.09679i
5000 \ 2.59490-0.08062i = 0.34571—0.16572i
TABLE 4
Axi-symmetric complex eigenvalues with negative real part for 0 < R < 10
R A A A
r0.25 ¢ -4.5126-1.4738i -7.9378~1.7309i -10.9174~1.8976i1
0.50 i -4.5601-1.47841 -7.7821-1.7331) -10.9607 — 1.8986i
1.00 | -4.6584-1.4823j -7.8727-1.73181 -11.0486-1.8949i1
2.50 -4.9823+1.44171 -8.1593-1.67441 -11.3231-1.83311
5.00 l -3.6481+-1.0772i -8.6844-1.24201 -11.8148-1.43381
| 1000 © -8.3161-1.3370i  -11.4575-1.4277i  -14.4887-1.5390i
27
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TABLE 5
Real positive axi-symmetric eigenvalues for R < 5000
R | A X \ \ A ;
10 | 2.84882 g |
25 1.23820 | l
50 | 0.63541 1.86985 : t
100 | 0.32000  0.95032  1.89301 ~ 3.21182 |
. 250 | 012827  0.38230  0.76379 1.27228 1.90837
. 500 | 0.06415  0.19134  0.38250  0.63760  0.95652
. 1000  0.03208  0.09568  0.19133  0.31900  0.47867
i 5000  0.00642  0.01914 - 0.03827  0.06381  0.09576
TABLE 6
Real negative axi-symmetric eigenvalues for R < 10°
R A A A |
5 10 : -4.94606 3 |
; 25 -4.49291 -8.13980 | -12.42763
| 50 . -4.31816  -T.77838 @ -11.24747
| 100 - -4.19980  -7.37708 . -10.92172
| 250  -4.09219  -7.40731 -10.68291
} 500 -4.03427 -7.31888 -10.56491 |
1000 -3.99010  -7.25228  -10.47775
2500  -3.94679  -7.18740 = -10.39379
5000  -3.92235  -7.15090 ' -10.34684
10000  -3.90323  -7.12238  -10.31023
50000  -3.87316  -7.07732  -10.25277
100000  -3.86432  -7.06463  -10.23627
28
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TABLE 7

0dd complex eigenvalues with negative real part for R > 10

. R A° (tol=1079) A° (tol> 1078)

! 10 | -10.458682-1.694815i -10.458682—1.694815i

1 25 | -16.941646-2.763071i -16.941646-2.763071i

| 50 |  -24.288883-1.07033Ti -24.288883~4.070337i

: 100 -34.664217 - 5.966789i -34.664089—5.966881i

_ | 250 |  -55.230448-9.710819;i -55.230451-9.710823i
500 | -113.389146—11.159176i  -113.389146—-11.159176i

‘ 1000 | -111.168228-19.879302i -111.168232-19.8793031i
1

2500 : -176.178035—31.692081i -176.178035—-31.692081i
[ 5000 i -362.979226-36.2962131 : -362.979211-36.296142i
| 10000 | -352.923824—63.768959i | -352.923830—63.768960i
' TABLE 8
E Critical Reynolds numbers and critical odd eigenvalues
i R%, AZ - RE, A
| 84606 263126  6.2983 | 5.89598
l 9.1376 = 3.42632 6.8691 | 6.97998
' 25.6282  2.67267 17.1490 ° 5.91199
| 26.3405 = 3.15830 18.0316 : 6.76338
50.8847 2.70372 31.6603 « 5.95620
31.3489 2.95271 32.6501 6.63307
: 84.1917 2.74161 49.3053  6.00915
: © 50.7706 6.51354
71.4975 ¢ 6.19109
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TABLE 9

Critical Revnolds numbers and critical even eigenvalues

- 19.5660
20.5465
37.1756
38.2524
59.8274
60.7830 4.81713
87.3756 4.38935

TABLE 10

Even complex eigenvalues for high Reynolds numbers

R | Ae Xo
1000 | 0.59650-0.20956i  1.60023—0.80362i

100000
1000000

0.31358-0.15003i 1.62420-0.77709i
0.22651-0.10819i 1.63013-0.778651

l
|
10000 ‘ 0.43318-0.20964i 1.61472~0.78146i
I
l
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Numerical vs Asymptotic Eigenvalues at high Reynolds numbers
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TABLE 11

|

A¢ (asympt)

0.59625-0.287251
0.43317+0.20780i
0.34572-0.163521
0.31358-0.15004i
0.24986-0.11950i1
0.23592-0.112711
0.22651-0.108191

o)

R ‘ A¢ (numer)
1000 0.59650—0.299561
10000 0.43317-0.209641
50000 0.34571-0.165721
100000 0.31358—-0.15003i
500000 0.24986—-0.11934i
750000 0.23592-0.11269:
1000000 0.22651—0.10819i
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